Microplasma Sputtering for 3D Printing of Metallic Microstructures

Lalitha Parameswaran, Richard Mathews, Livia Racz MIT Lincoln Laboratory

> Yosef Kornbluth, Luis Velasquez-Garcia Massachusetts Institute of Technology

> > 1 May 2018

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering.

© 2018 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

UNCLASSIFIED

MIT Lincoln Laboratory

MIT Lincoln Laboratory is a Department of Defense (DoD) federally funded research and development center (FFRDC) working on problems critical to national security.

Motivation: Agile Production of 3D Microsystems

Motivation: Agile Production of 3D Microsystems

Key capability → Printing high-quality functional materials (electrical, optical, magnetic)

3D Printed Interconnect: Current Technologies

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

iMAPS 2018 - 5 LP 05/01/18

3D Printed Interconnect: Current Technologies

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

iMAPS 2018 - 6 LP 05/01/18

3D Printed Interconnect: Current Technologies

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

iMAPS 2018 - 7 LP 05/01/18

State of the Art in Additive Manufacturing of Conductors

Direct ink writing

Transfer of nanoparticles

Adv. Mater., 27, 4322, 2015.

Electrohydrodynamic printing

Dptics Express 22(23) 2014. Laser-assisted electrophoretic deposition

Transfer of melt droplets

Scientific Reports 5:17265, 2015.

Laser-induced forward transfer

In situ synthesis

Science 329, 315, 2010 . Meniscus-confined electroplating

Chemical reduction

Adv. Mater., 28, 2311, 2016. Electroplating of locally dispensed ions in liquid

Small, 5, 1144, 2009. Laser-induced photoreduction

Dissociation of metal precursors

Appl. Phys. A, 122, 280, 2016.

State of the Art in Additive Manufacturing of Conductors and Semiconductors

Technique	Conductivity	Materials Demonstrated	Minimum feature size	Substrate	Post processing	Commercial example
Direct ink write DIW	~10x bulk with anneal	Ag	10s μm	No constraints	Laser anneal	Harvard/ Voxel8
Electrohydrodynamic printing	~10x bulk with anneal	Au, Ag, Cu	10s μm	Conductive	Thermal anneal	
Laser assisted electrophoresis	~100x bulk	Au	~10 μm	Conductive	Thermal anneal	
Laser induced forward transfer LIFT	~10x bulk	Many metals	<mark>∼10s</mark> μm	No constraints	None	Orbotech
Meniscus confined electroplating	~10x bulk	Cu, Pt	<10 μm	Conductive	None	
Laser induced photoreduction	~100x bulk	Ag	<10 μm	Transparent	None	
Focused ion beam induced deposition	~10x bulk with anneal	Many metals	<10 μm	Conductive	Thermal anneal	
Extruded pastes	1e2-1e5 bulk	Ag, Au	100s μm	High temp	High temp compatible	Stratasys

State of the Art in Additive Manufacturing of Conductors and Semiconductors

Technique	Conductivity	Materials Demonstrated	Minimum feature size	Substrate	Post processing	Commercial example
Direct ink write DIW	~10x bulk with anneal	Ag	10s μm	No constraints	Laser anneal	Harvard/ Voxel8
Electrohydrodynamic printing	~10x bulk with anneal	Au, Ag, Cu	10s μm	Conductive	Thermal anneal	
Laser assisted electrophoresis	~100x bulk	Au	~10 μm	Conductive	Thermal anneal	
Laser induced forward transfer LIFT	~10x bulk	Many metals	~10s µm	No constraints	None	Orbotech
Meniscus confined electroplating	~10x bulk	Cu, Pt	<10 μm	Conductive	None	
Laser induced photoreduction	~100x bulk	Ag	<10 μm	Transparent	None	
Focused ion beam induced deposition	~10x bulk with anneal	Many metals	<10 μm	Conductive	Thermal anneal	
Extruded pastes	1e2-1e5 bulk	Ag, Au	100s μm	High temp	High temp compatible	Stratasys
Microplasma deposition	Thin film material	Any sputtered material	<10 μm	No constraints	None	

Leapfrog technology has potential for:

- High quality, smooth deposits
- Many materials conductors, semiconductors, dielectrics
- Maskless feature definition
- No substrate limitations
- No post-processing
- Scalability, compatibility with 3D printers

- In atmospheric plasma, collisions spread sputtered material
- Electric fields used to focus plasma, but ion drag focusing generates pressure which forces defocusing
- Innovative concept: 4-electrode focusing mechanism

Recent Demonstrations of Microplasma Metal Deposition

U. British Columbia, 2016

- DC plasma, Cu cathode
- Write speed ~20 $\mu m/sec$
- Feature size > 100 μm, no resistivity data

Abdul-Wahed et al, MEMS 2016, Shanghai, CHINA, 24-28 January 2016

Initial demonstrations empirical – minimal understanding of underlying physics Critical issues not addressed: feature size, material quality

Microplasma Sputtering Development

Microplasma Sputtering Development

Long-term Goal:

Microplasma sputtering of conducting, semiconducting and insulating features for integrated microsystems

System Modeling with COMSOL

System Modeling with COMSOL

Increasing target-substrate gap improves focusing, but decreases yield

Modeling Effect of Parameters

Increasing target-substrate gap improves focusing, but decreases yield

Increasing focus voltage improves focusing, but decreases yield

1st Generation Write Head

Compact for Integration with 3D Printer

1st Generation Write Head

Compact for Integration with 3D Printer

1st Demonstration of Microplasma Sputtered Metal

- Energy dispersive X-ray analysis (EDX) confirms deposits are gold
- Resistivity ~ 1.5 x 10⁻⁶ Ω -m (75x bulk metal)
- Challenges: Morphology, adhesion, linewidth

2nd Generation Write Head

2nd Generation Write Head Printing Gold Line on Paper

Demonstrated printing on silicon, glass, paper, plastic

Summary

Long-term Goal:

Microplasma sputtering of conducting, semiconducting and insulating features for integrated microsystems

Microplasma Sputtering – A New Paradigm

- Micro-actuators
- Micro-power sources

- Low SWaP materials
- Multiscale nonplanar structures ٠

Atmospheric microplasma sputtering offers a new paradigm for additive manufacturing of functional materials with no binders, inks, or post-processing, to enable efficient low-cost production of complete microsystems.

Thank you for your attention.

Lalitha Parameswaran <u>lalithap@ll.mit.edu</u> MIT Lincoln Laboratory <u>www.ll.mit.edu</u>